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INTRODUCTION	
	
	 Ensuring	access	to	healthy,	locally	grown	food	has	been	a	challenge	for	many	

American	cities.	The	Philadelphia	Food	Trust	has	set	up	numerous	benefits	to	

consumers	who	shop	there	and	to	their	communities.	That	said,	not	all	

neighborhoods	in	Philadelphia	have	access	to	these	markets.	Parts	of	South	

Philadelphia	and	North	Philadelphia,	and	nearly	all	of	Northeast	Philadelphia,	have	

no	markets	at	all—this	deprives	those	communities	of	the	benefits	offered	by	the	

city	of	Philadelphia,	including:	fresher	and	healthier	foods,	a	greater	variety	of	foods,	

reduced	overhead	(driving,	parking,	etc.),	and	a	generally	relaxing	outdoor	

atmosphere.	

	 This	project	aims	to	examine	the	spatial	distribution	of	farmers	markets	in	

Philadelphia	by	carrying	out	several	types	of	point	pattern	analyses	to	see	whether	

markets	are	randomly	placed,	dispersed,	or	clustered	throughout	the	city.	It	makes	

use	of	a	shapefile	containing	locations	of	all	farmers	markets	in	Philadelphia	for	the	

year	of	2013,	obtained	from	the	PA	Spatial	Data	Access	website	

(www.pasda.psu.edu).	

	
METHODS	
	
In	this	project	we	will	be	working	heavily	with	the	placement	of	points	and	the	

concept	of	randomness.	A	point	process	is	completely	spatially	random	(CSR)	if	the	

probability	that	a	point	lands	in	any	of	the	cells	is	directly	proportional	to	the	area	of	



the	cell.	If	you	have	equally	sized	cells,	a	point	is	equally	likely	to	land	in	any	cell,	

and	where	one	point	lands	has	no	effect	on	where	any	of	the	other	points	land.	We	

will	be	testing	the	null	and	alternative	hypotheses	for	the	point	pattern	analysis	of	

this	data:	

𝐻":	Complete	spatial	randomness	

𝐻#:	A	lack	of	complete	spatial	randomness	

	

	 Quadrat	counting	is	technique	for	analyzing	spatial	point	patterns.	The	

window	containing	the	point	pattern		is	divided	into	grid	of	rectangular	tiles	or	

“quadrats”.	The	number	of	points	of	X	falling	in	each	quadrat	is	counted.	These	

numbers	are	returned	as	a	contingency	table.1	We	may	choose	the	number	of	cells	to	

correspond	to	our	area	of	study.	In	the	case	of	farmers	markets	in	Philadelphia,	we	

would	use	103,000	feet	for	the	height	and	90,000	feet	for	the	width	of	the	study	

area:	this	way,	the	lattice	would	encompass	not	just	the	farmers	market	points,	but	

the	entire	Philadelphia	area.	The	size	of	the	quadrant	may	be	arrived	at	from	the	

following	equation:	

	
Quadrant	(cell)	area	=	( 2	*	(103,000*90,000)	/	#	of	points)&	

	
	 Two	statistical	methods	can	be	used	to	test	the	null	hypothesis,	those	being	

the	Kolmogorov-Smirnov	test	and	Variance/Mean	Ratio	(VMR).	The	Kolmogorov-

Smirnov	test	compares	an	observed	set	of	frequencies	to	a	theoretical	frequency	

distribution.	In	the	case	of	quadrat	analysis	of	point	pattern,	we	test	the	fit	of	our	

																																																								
1http://mapas.mma.gov.br/i3geo/pacotes/rlib/win/spatstat/html/quadratcount.ht
ml	



observed	set	of	point	pattern	frequency	in	quadrats	against	the	random	Poisson	

frequency	distribution.		

	

𝐻":	the	pattern	is	random	(the	observed	frequency	is	of	the	random	Poisson	frequency)	

𝐻#:	the	pattern	is	NOT	random	(the	observed	point	pattern	frequency	is	not	the	random	Poisson	

frequency)	

	

This	does	not	really	distinguish	between	dispersion	and	clustering	–	just	random	vs.	

not	random.	To	determine	whether	it’s	dispersed	or	clustered,	we	must	look	at	the	

pattern	if	the	test	shows	that	the	points	are	not	random.	

	 The	test	statistic	is	the	largest	absolute	difference,	D,	given	as	D	=	|Co	-	Ce|	

where	Co	and	Ce	are	the	observed	and	expected	cumulative	proportions	for	each	

value	of	x.	The	computed	test	statistic	D	is	compared	to	the	critical	value	of	D	

obtained	from	a	special	Kolmogorov-Smirnov	table.	The	value	of	the	critical	value	

depends	on	the	level	of	significance,	α	(0.05	for	us),	and	degrees	of	freedom,	ν.	Here,	

for	the	degrees	of	freedom,	ν	is	the	sum	of	the	observed	frequencies	(#	of	quadrats).	

	 The	VMA	is	the	variance	of	the	#	of	points	per	cell	divided	by	the	average	of	

the	#	of	points	per	cell:	

VMR	=	VAR(#)/MEAN(#)	
	
Here,	VMR	=	1	indicates	we	have	a	random	pattern.	Mean	=	Variance	=	λ,	so	

mean/variance	=	1.	This	is	what	happens	when	the	observed	frequency	of	points	

per	cell	is	equal	to	the	expected	frequency	of	points	per	cell	(under	Poisson).	VMR	<	

1	indicates	uniformity	(dispersion),	where	variance	is	less	than	the	mean.	That	is,	

there	is	little	variability	in	the	number	of	points	per	cell.	Variance	=	0	indicates	



perfect	uniformity,	because	it	means	that	there	is	no	variability	in	the	#	of	points	per	

cell.	VMR	>	1	indicates	clustering,	where	there	is	great	variability	in	the	number	of	

points	per	cell.	Some	may	have	only	a	few,	and	others	may	have	many	(i.e.,	

clustering).	

	 Limitations	of	the	Quadrat	method	include	results	stemming	from	

differences	in	cell	size	and	range.	If	we	use	the	same	pattern,	same	range,	and	

different	cell	size,	it	is	possible	to	obtain	different	results.	The	same	can	be	said	for	

using	the	same	pattern,	same	cell	size,	and	different	range	(causing	different	

results).	The	quadrat	method	is	a	measure	of	point	density,	since	we’re	counting	the	

number	of	points	per	unit	area	(i.e.	quadrat	or	cell),	though	we	are	not	taking	into	

consideration	how	far	apart	the	points	are,	and	how	they’re	arranged	in	space.	This	

is	a	critical	limitation	and	so	we	should	also	examine	other	point	pattern	methods.	

	 Nearest	neighbor	analysis	examines	the	distances	between	each	point	and	

the	closest	point	to	it,	and	then	compares	these	to	expected	values	for	a	random	

sample	of	points	from	a	CSR	(complete	spatial	randomness)	pattern—this	means	

that	it	compares	observed	average	distance	between	each	point	and	its	nearest	

neighbor,	as	well	as	the	expected	average	distance	between	each	point	and	its	

nearest	neighbor	if	the	point	pattern	were	random.	The	Nearest	Neighbor	Index	

(NNI)	=	Observed	Average	Distance/Expected	Average	Distance	(when	pattern	is	

random)	is	denoted	as	follows:	

=	'(
')
	

	
When	the	NNI	is	close	to	1,	we	have	a	random	pattern.	NNI	=	1	implies	that	observed	

average	distance	is	equal	to	the	expected	average	distance	when	the	pattern	is	



random.	When	NNI	is	close	to	zero,	we	have	a	clustered	pattern.	NNI	=	0	implies	that	

the	observed	average	distance	=	0,	i.e.	that	all	of	the	points	in	our	pattern	are	located	

in	the	same	spot.	When	NNI	is	close	to	2	(at	most	2.149),	we	have	a	dispersed	

pattern.	NNI	>	2	implies	that	the	observed	average	distance	is	much	larger	than	the	

expected	average	distance	when	the	pattern	is	random.	We	noted	that:	

𝑵𝑵𝑰 = 	𝑫𝟎/𝑫𝑬:	This	formula	describes	the	observed	average	distance	divided	by	the	expected	

average	distance	(when	the	pattern	is	random).	The	formulas	for	𝐷"	and	𝐷3 	are	shown	below.	

𝑫𝟎 = 	 𝒊 = 𝟏𝒏𝑫𝒊/𝒏:	This	formula	describes	the	sum	of	all	distances	between	each	feature,	i,	and	its	

nearest	neighbor,	divided	by	the	number	of	features,	n)	

𝑫𝑬 =
𝟎.𝟓

( 𝒏)/𝑨
:	This	formula	describes	n	as	the	number	of	features,	and	A	as	the	area	of	the	minimum	

enclosing	rectangle.	

Our	hypothesis	is	as	follows:	
	
	

𝐻":	The	observed	point	pattern	is	random	(i.e.	it	isn’t	significantly	different	from	the	expected	point	
pattern)	

	
𝐻#:	The	observed	point	pattern	is	not	random	(i.e.	there	is	either	significant	clustering	or	dispersion)	
	
	 Our	test	statistic	has	a	z	(standard	normal)	distribution	and	is	denoted	
below:	
	

𝐷" − 𝐷3
𝑆𝐸'>

	

	

𝑧 = 	𝐷" −
𝐷3
𝑆𝐸 = 	 𝑖 =

1B𝐷C
𝑛 − 0.5/(

𝑛
𝐴

0.26136
𝑛&

)/𝐴	

	
	
Here,	we	are	taking	𝐷",	subtracting	𝐷3 ,	the	expected	value	of	𝐷"	when	𝐻"	is	true,	and	

dividing	the	difference	by	(an	estimate	of)	the	standard	error	of	𝐷".	We	are	able	to	



use	the	standard	normal	table	to	get	a	p-value	from	calculated	z,	which	corresponds	

to	an	𝛼-value	and	helps	to	assess	significance	to	reject,	or	to	fail	to	reject,	𝐻".		

If	z	>	19.6	or	z	<	-1.96,	we	can	reject	𝐻"	for	𝐻#	at	𝛼	=	0.05.	If	z	>	1.96,	we	have	

significant	dispersion.	This	implies	that	𝐷"	>	𝐷3 ,	i.e.	the	average	observed	distance	is	

greater	than	the	average	expected	distance,	meaning	that	we	have	significant	

dispersion.	If	z	<	-1.96,	we	have	significant	clustering.	This	implies	that	𝐷"	<	𝐷3 ,	i.e.	

that	the	average	observed	distance	is	smaller	than	the	average	expected	distance,	

meaning	that	we	have	significant	clustering.	

	 NNI	does	not	depend	on	the	size	of	the	quadrat	because	it	only	uses	the	

distances	between	points—this	accounts	for	one	limitation	in	VMR	we	discussed	

previously.	That	said,	there	are	still	limitations:	NNI	takes	into	account	average	

distance	to	only	the	nearest	neighbor.	It	depends	greatly	on	the	value	of	A,	the	area	

of	the	study	region.	Taking	the	example	of	hospital	locations	in	Philadelphia,	which	

has	an	irregular	(non-rectangular)	shape.		

The	figure	to	the	left	shows	hospitals	

clustered	near	center	city—however,	NNI	

also	does	not	take	into	consideration	the	

fact	that	both	clustering	and	dispersion	

may	be	present	at	different	scales.	Thus,	if	

your	study	area	is	irregularly	shaped	you	

can	only	increase	the	area	of	the	bounding	

rectangle	to	account	for	this	shape—

quadrat	analysis	also	has	this	issue.	



	

	 The	idea	behind	the	K-Functions	Analysis	is	to	help	show	how	spatial	

clustering	or	dispersion	changes	when	the	neighborhood	size	(scale)	changes.	To	

further	illustrate	this	idea,	the	K(d)	function	is	described	below,	along	with	a	series	

of	steps	that	k-functions	will	follow:	

	

𝐾 𝑑 =
( #[𝑆	 ∈ 	𝐶𝑖𝑟𝑙𝑐𝑒(𝑠C, 𝒅)B

CXY ])/𝑛
𝑛/𝑎 =

𝑀𝑒𝑎𝑛	#	𝑝𝑜𝑖𝑛𝑡𝑠	𝑖𝑛	𝑎𝑙𝑙	𝑐𝑖𝑟𝑐𝑙𝑒𝑠	𝑜𝑓	𝑟𝑎𝑑𝑖𝑢𝑠	𝒅
𝑀𝑒𝑎𝑛	𝑝𝑡	𝑑𝑒𝑛𝑠𝑖𝑡𝑦	𝑖𝑛	𝑒𝑛𝑡𝑖𝑟𝑒	𝑠𝑡𝑢𝑑𝑦	𝑟𝑒𝑔𝑖𝑜𝑛	𝒂

	

	
	
Assume	we	have	n	points	in	our	dataset,	and	that	the	area	of	the	study	region	is	

denoted	by	a.	A	description	of	K-functions	is	as	follows:	

	
(1)	Place	circles,	each	of	radius	d,	around	every	event	(point).		
(2)	The	number	of	other	events	(points)	inside	each	circle	of	radius	d	is	then	
counted	
(3)	From	here,	it	is	possible	to	calculate	the	average	number	of	other	events	(points)	
in	all	circles	of	radius	d.	
(4)	We	then	divide	this	average	count	of	other	events	by	the	overall	study	area	event	
density	(n/a)	to	get	the	K-function	at	distance	d,	as	denoted	as	K(d).		
(5)	These	steps	are	repeated	for	a	range	of	values	of	d.		
	
Under	this	function:	
	
K(d)	>	𝜋𝑑&	implies	clustering	at	scale	d	
K(d)	<	𝜋𝑑&	implies	dispersion	at	scale	d	
	
For	ease	of	interpretation,	however,	many	statistical	software	packages	report	

results	in	terms	of	L(d)	functions	and	not	K(d)	functions.	This	may	be	defined	as	a	

transformed	K(d)	function,	such	as	that	for	all	(non-negative)	distances	d:	

𝐿 𝑑 =
𝐾(𝑑)
π − 𝑑	

	



𝐿 𝑑 =
𝑎 ∙ #	𝑜𝑓	𝑝𝑜𝑖𝑛𝑡𝑠	𝑤𝑖𝑡ℎ𝑖𝑛	𝑐𝑖𝑟𝑐𝑙𝑒	𝑜𝑓	𝑟𝑎𝑑𝑖𝑢𝑠	𝑑	(𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔	𝑝𝑜𝑖𝑛𝑡	𝑎𝑡	𝑐𝑒𝑛𝑡𝑒𝑟	𝑜𝑓	𝑐𝑖𝑟𝑐𝑙𝑒)

𝜋 ∙ 𝑛 ∙ (𝑛 − 1)
	

	
	
Here,		
L(d)	=	0	under	CSR	
L(d)	>	0	when	there	is	clustering	at	scale	d	
L(d)	<	0	when	there	is	dispersion	at	scale	d	
	
In	ArcGIS,	
L(d)	=	 𝑎	#	of	points	within	the	circle	of	radius	d	(excluding	point	at	center	of	
circle)/	𝜋n(n-1)	
	

𝑈𝑛𝑑𝑒𝑟	𝐶𝑆𝑅, 		𝐿(𝑑) =
𝜋𝑑&

π = 𝑑	

	
	
Hypothesis	testing	for	K-functions	describe:	
	
	

H0:	At	distance	d,	the	pattern	is	random	(you	have	Complete	Spatial	Randomness	at	distance	d)	

Ha1:	At	distance	d,	the	pattern	is	clustered	

Ha2:	At	distance	d,	the	pattern	is	uniform	

	
	 To	test	significance,	we	take	the	randomly	generated	patterns	and	for	each	

distance	d	find	the	lowest	value	of	L(d),	denoted	by	L(d)	and	called	lower	

envelope,	and	the	highest	values	of	L(d),	denoted	by	L(d)	and	called	upper	

envelope.	These	values	represent	the	lowest	and	highest	values	of	L(d)	that	you	

would	expect	to	occur	by	chance	(i.e.	under	CSR)	at	each	particular	distance	d.	

Because	this	confidence	envelope	is	constructed	from	random	permutations,	the	

values	defining	the	confidence	envelope	will	change	from	one	run	to	the	next,	

even	when	the	parameters	are	identical.	By	setting	a	seed	value	for	the	Random	

Number	Generator	geoprocessing	environment,	repeat	analyses	will	produce	



consistent	results.	The	number	of	permutations	selected	for	the	Compute	

Confidence	Envelope	parameter	may	be	loosely	translated	to	confidence	levels:	9	

for	90%,	99	for	99%,	and	999	for	99.9%.	For	instance,	when	you	have	999	

permutations	and	𝐿nop(d)	<	L-(d)	at	some	distance	d,	then	you	can	be	

approximately	99.9%	confident	that	you	have	significant	dispersion	at	that	

distance	d.	

	 For	this	study,	we	will	be	using	the	following	settings	in	ArcGIS	for	our	

analysis	to	determines	whether	features,	or	the	values	associated	with	features,	

exhibit	statistically	significant	clustering	or	dispersion	over	a	range	of	distances:	

a.	Use	10	as	the	‘Number	of	Distance	Bands’	

b.	Select	99	Permutations	under	‘Compute	Confidence	Envelope’	

c.	Check	‘Display	Results	Graphically’	

d.	Leave	the	‘Weight	Field’	blank	

e.	Put	in	0	for	‘Beginning	Distance’	

f.	Put	in	2500	feet	for	‘Distance	Increment’	

g.	Select	Simulate_Outer_Boundary_Values	for	‘Boundary	Correction	Method’	

h.	Select	User_Provided_Study_Area_Feature_Class	under	‘Study	Area	Method’	

i.	Select	the	Philadelphia	shapefile	under	‘Study	Area	Feature	Class’)	

	

	 Points	very	close	to	the	boundary	of	a	specified	region	can	be	accounted	for	

by	the	Ripley’s	edge	correction,	which	checks	each	point's	distance	from	the	

edge	of	the	study	area	and	its	distance	to	each	of	its	neighbors.	All	neighbors	that	

are	farther	away	from	the	point	in	question	than	the	edge	of	the	study	area	are	

given	extra	weight.	Another	way	of	saying	this	is	that	neighboring	points	located	



inside	the	study	area	are	given	extra	weight	to	account	for	the	fact	that	there	

could	never	be	points	in	the	part	of	the	circle	that’s	outside	the	study	area.	

	 While	Ripley’s	edge	correction	works	only	for	rectangular	study	regions,	

there	are	other	edge	corrections	in	ArcGIS.	The	Simulate	Outer	Boundary	Values	

edge	correction	method	mirrors	points	across	the	study	area	boundary	to	

correct	for	underestimates	near	edges.	Points	that	are	within	a	distance	equal	to	

the	maximum	distance	band	of	the	edge	of	the	study	area	are	mirrored.	The	

mirrored	points	are	used	so	that	edge	points	will	have	more	accurate	neighbor	

estimates.	In	this	project	we	will	be	utilizing	the	Ripley’s	edge	correction.	

	

RESULTS	

	

	 The	two-sample	Kolmogorov-Smirnov	test	output	is	displayed	below:	

	

Two-sample Kolmogorov-Smirnov test 

data:  obscumprop and expcumprop 

D = 0.8, p-value = 0.002057 

alternative hypothesis: two-sided 

 

Because	the	p-value	is	small,	we	may	conclude	that	the	two	groups	were	sampled	

from	populations	with	different	distributions.	The	populations	may	differ	in	median,	

variability	or	the	shape	of	the	distribution.		

	



	 Results	of	our	Nearest	Neighbor	analysis	are	described	on	the	following	page.	

Given	the	z-score	of	-0.0699452830094	and	p-value	of	0.944237,	the	pattern	

does	not	appear	to	be	significantly	different	than	random.	

 
	

Average	Nearest	Neighbor	Summary	

Observed	Mean	Distance:		 3112.9097	US_Feet	

Expected	Mean	Distance:		 3127.4314	US_Feet	

Nearest	Neighbor	Ratio:		 0.995357	

z-score:		 -0.069945	

p-value:		 0.944237	

Dataset	Information	

Input	Feature	Class:		 Philadelphia_Farmers_Markets201302	

Distance	Method:		 EUCLIDEAN	

Study	Area:		 2425645188.585607	

Selection	Set:		 False	
	
	

Upon	re-running	this	analysis	using	the	area	of	Philadelphia	polygon	(as	

opposed	to	the	minimum	enclosing	rectangle),	however,	our	results	change	

tremendously.	By	changing	the	area	of	the	enclosing	rectangle,	our	z-score	

becomes	-3.344634,	and	our	p-value	becomes	0.000824.	Given	the	z-score	of	-

3.34463398096,	there	is	a	less	than	1%	likelihood	that	this	clustered	pattern	

could	be	the	result	of	random	chance.	Our	output	is	described	in	greater	detail	

below:	

	



Average	Nearest	Neighbor	Summary	

Observed	Mean	Distance:		 3112.9097	US_Feet	

Expected	Mean	Distance:		 4001.3504	US_Feet	

Nearest	Neighbor	Ratio:		 0.777965	

z-score:		 -3.344634	

p-value:		 0.000824	

Dataset	Information	

Input	Feature	Class:		 Philadelphia_Farmers_Markets201302	

Distance	Method:		 EUCLIDEAN	

Study	Area:		 3970679604.941694	

Selection	Set:		 False	
	

	 When	we	look	at	the	results	of	the	nearest	neighbor	analysis	in	terms	of	the	

minimum	enclosing	rectangle,	we	are	not	able	to	reject	the	null	hypothesis	that	

the	observed	point	pattern	is	random,	in	favor	of	the	alternative	hypothesis,	that	

the	observed	point	pattern	is	not	random	(i.e.	there	is	either	significant	

clustering	or	dispersion).	That	said,	when	we	use	the	area	of	the	Philadelphia	

polygon,	our	results	change	significantly,	and	we	can	safely	reject	the	null	

hypothesis	in	favor	of	the	alternative	hypothesis	for	significant	clustering.	

	 Our	K-function	analysis	in	ArcGIS	produces	this	illustration	of	ExpectedK	and	

ObservedK	containing	the	expected	and	observed	K	values,	respectively.	Here,	

we	can	see	that	our	observed	K	value	is	larger	than	the	expected	K	value	for	a	

particular	distance,	meaning	that	the	distribution	is	more	clustered	than	a	

random	distribution	at	that	distance	(scale	of	analysis).	Because	our	observed	K	



value	is	also	larger	than	the	HiConfEnv	value,	especially	at	larger	distances,	

spatial	clustering	for	that	distance	is	statistically	significant.	

	

	

	

The	ArcGIS	output	also	produces	the	following	table,	which	provides	the	

observed	and	expected	K	values,	as	well	as	the	difference	between	them	

(observed	k	minus	expected	k),	and	the	high	and	low	confidence	interval	

information	for	each	iteration	of	the	tool,	as	specified	by	the	number	of	bands	

parameter.		

	

	



	

	

	

	

	

	

	

	

	

	

We	are	able	to	reject	the	null	hypothesis	of	a	random	pattern	(complete	spatial	

randomness	at	distance	d)	as	well	as	the	second	alternative	hypothesis	(at	

distance	d,	the	pattern	is	uniform)	in	favor	of	the	first	alternative	hypothesis	(at	

distance	d,	the	pattern	is	clustered).	Though	our	graph	of	the	k-function	analysis	

does	show	that	clustering	increases	at	larger	distances,	it	remains	that	the	

pattern	is,	in	fact,	clustered	at	all	distances	and	shown	to	be	statistically	

significant	at	each	distance.	

	 An	analysis	in	R	on	the	following	page	provides	similar	results:	

OBJECTID	 ExpectedK	 ObservedK	 DiffK	 LwConfEnv	 HiConfEnv	
1	 2500	 3701.593	 1201.593	 2163.021	 3701.593	
2	 5000	 7691.01	 2691.01	 4551.898	 6641.768	
3	 7500	 11959.65	 4459.654	 7056.508	 9463.769	
4	 10000	 15863.32	 5863.325	 9844.547	 11889.59	
5	 12500	 19372.54	 6872.542	 12385.2	 14544.49	
6	 15000	 22737.46	 7737.456	 14828.93	 17543.92	
7	 17500	 25930.49	 8430.489	 17197.62	 20175.32	
8	 20000	 28846.72	 8846.717	 19484.35	 22456.46	
9	 22500	 31334.49	 8834.489	 21691.92	 24824.31	
10	 25000	 33454.48	 8454.481	 23581.61	 27244.01	

	 	 	 	 	 	



	

Here,	we	can	see	that	our	observed	k-values	are	well	above	the	high	confidence	

interval	for	each	iteration	of	the	tool.	Again,	this	means	that	we	have	significant	

spatial	clustering	at	distance	d.			

	 Ideally,	we	would	want	to	compare	our	actual	pattern	to	9,	99,	or	999	

generated	patterns	that	take	into	consideration	the	population	density	that	is	

being	served.	It	is	certainly	possible	that	we	would	see	different	results	if	we	

were	to	take	into	consideration	the	population	density	at	each	zip	code—a	lack	

of	grocery	stores,	fresh	food	access,	etc.,	might	sometimes	be	attributed	to	lower	

populations.	Despite	population	density,	it	is	still	very	important	to	recognize	

which	communities	have	little	access	to	these	resources.	

	



DISCUSSION	

	

	 The	results	obtained	with	the	nearest	neighbor	analysis	(using	the	area	of	

Philadelphia	as	the	bounding	area,	as	opposed	to	the	minimum	bounding	

rectangle)	and	k-function	analysis	are	consistent	with	each	other	in	that	we	are	

able	to	reject	the	null	hypotheses	of	spatial	randomness	in	favor	of	the	

alternative	hypothesis	of	spatial	clustering.		

Based	on	the	visual	examination	

of	the	point	data,	and	given	the	

limitations	of	each	method,	our	

results	are	still	consistent	with	

our	expectations	for	significant	

spatial	clustering.	A	map	of	

median	household	income	at	the	

zip	code	level	is	shown	to	the	

left.	There	is	some	evidence	for	

clustering	in	these	areas,	

however,	clustering	seems	to	be	

more	strongly	associated	with	location	(i.e.	center	city	branching	off	into	the	

northwestern	suburbs)	as	opposed	to	following	an	income-based	trend.	

	 Results	of	the	k-function	analysis	for	the	spatial	distribution	of	farmers	

markets	in	Philadelphia	conclude	that	farmers	markets	are	clustered	in	the	city.	

Implications	of	these	findings	may	be	to	take	further	measures	to	assure	that	all	



Philadelphians	have	access	to	the	benefits	of	these	farmers	markets.	This	might	

be	accomplished	by	delving	deeper	into	the	cause	of	this	clustering:	perhaps	

these	are	areas	more	heavily	frequented	by	tourists	or	commuters,	or	maybe	

they	feature	certain	characteristics	that	make	people	more	inclined	to	shop	

there.	Whatever	the	reason,	it	is	in	the	Philadelphia	Food	Trust’s	best	interests	to	

continue	to	dig	into	this	issue	to	help	provide	farmers	market	access	to	all	

Philadelphians	where	they	need	them	most.	


